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SUMMARY 

To advance the computational capability for combustor research, a three- 

dimensional partially elliptic flow computer program is developed from a con- 

cept originated by Spalding. Without requiring three-dimensional computer 

storage locations for all flow variables, the partially elliptic flow program 

is capable of predicting three-dimensional combustor flow fields with large 

downstream effects. This program requires only slight increase of computer 

storage over the parabolic flow program from which it was developed. 

A finite-difference formulation for a three-dimensional fully elliptic 

tl.rbulen\. ::,eacting flow field is derived. Because of the negligible diffusion 

effects in the main flow direction in a supersonic combustor, the set of finite- 

difference equations can be reduced to a partially elliptic form. Only the 

pressure field is governed by an elliptic equation and requires a three- 

dimensional storage location Cr numerical computations. All other dependent 

variables are governed by parabolic equations similar to those in the parabolic 

flow program and require only two-dimensional storage locations. A numerical 

procedure which combines the previously used marching-integration scheme and 

an iterative scheme for solving the elliptic pressure field is adopted in the 

present program. 

Because of a lack of suitable experimental measurements, calculations 

were performed to compare with corresponding calculations made using the 



parabolic flow program. Comparisons show that physically meaningful differences 

are predicted. These differences are especially significant in calculations 

of combustion flow fields. Finally, capabilities and limitations of the 

present program are discussed and future extensions are suggested. 
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SYMBOLS 

expression, eq. (3) 

empirical constants associated with the turbulence model 

coefficients of pressure gradients in the x,y,z directions, 

respectively 

empirical constant, eq. (7) 

mass fraction 

expression, eq. (12) 

total enthalpy 

turbulence kinetic energy 

Mach number 

pressure 

Prandtl number 

source term, eq. (1) 

temperature 

velocity components in the x,y,z direction, respectively 

rectangular coordinates 

exchange coefficeint 

distance between two node points 

turbulence dissipation energy rate 

empirical constant, eq. (7) 
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viscosity 

density 

shear stress 

4 general dependent variable, eq. (1). 

Subscripts: 

eff effective 

east, west, south, north, upstream, downstream faces, 

respectively. 

E,W$,N,U,D east, west, south, north, upstream, downstream points, 

respectively 

H2° 

j 

R 

P 

t 

TH 

Superscripts: 

water vapor 

jet 

lsminar 

arbitrary node point 

turbulent 

total hydrogen 

wall 

general dependent variable 

nondimensional variable, eq. (7) 

guessed or approximate quantity 

correction variable. 
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I. INTRODUCTION 

A computational approach to the prediction of three-dimensional turbulent 

reacting flow fields in supersonic combustors along with experimentation has 

been adopted at NASA Langley Research Center for the scrsmjet combustor develop- 

ment. Such a computational approach is intended to supplement the traditional, 

expensive, cut-and-try experimental approach and to help overcome some of the 

experimental difficulties associated with the scramjet combustor development. 

In the computational approach, the computer storage and computing time 

are always prime concerns in developing a computer program. However, by 

recognizing special characteristics of the flow field, mathematical and physical 

simplifications can often be made, so that useful engineering results can be 

obtained economically within the existing computer capabilities. One such 

computer program is the SHIP1 (Supersonic Hydrogen Injection Program) computer 

program, which has recently been evaluated, improved, and employed for super- 

sonic combustor design at NASA Langley Research Center. 233 The SHIP program 

is based on a set of parabolic three-dimensional flow equations simplified from 

the full Navier-Stokes equations together with equations for turbulence kinetic 

energy, dissipation rate, and species ccncentrations. Because of the parabolic 

flow simplification, all flow variables require only two-dimensional computer 

storage and a marching integration procedure can be used in the main flow 

direction. The main limitations for combustor development are inability to 

predict recirculation flow fields which occur adjacent to fuel injectors and 

in separated regions near walls, and to predict the downstream feedback effects 

due to the presence of embedded subsonic flow fields. 
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The aforementioned limitations of the SHIP program could be overcome by 

developing a three-dimensional, fully elliptic flow computer program for the 

entire combustor. Such a three-dimensional computer program would require a 

three-dimensional computer storage location for each of more than twenty flow 

variables. In addition to other mathematical and physical complications, 

such a fully elliptic approach would be impractical and uneconomical using 

present computers. Since recirculations are usually localized, they may be 

either modeled or computed separately from the main combustor flow field. Flow 

separation close to a wall is associated with energy and total pressure losses 

in the combustor; such losses should be minimized in a practical design. Since 

a predominant flow direction is present in the main flow field of a supersonic 

combustor, (along which the diffusions of mass, momentum, energy, species, 

etc. can be neglected), the usual parabolic approximation. can be applied to 

simplify the flow equations. However, embedded subsonic combustion regions can 

be present within the supersonic stream; thus, downstream effects may be felt 

upstream by means of pressure disturbance propagated through the subsonic fields. 

The present partially elliptic flow computer program is developed to take such 

effects into consideration. 

The concept of the numerical partially elliptic approach was originated 

by Spalding. 4 In view of the approximately parabolic nature of the flow field, 

all flow variables except the pressure are stored only in two-dimensional lo- 

cations in the computer. Only the pressure, which is governed by an elliptic 

equation, requires three-dimensional storage. Thus, it is possible to adopt 

an iterative marching-integration procedure whereby several iterations of the 

flow field in the predominant flow direction are made. Each iteration uses an 

improved estimate of-the pressure field obtained from the previous iteration. 
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Iterations are continued until a convergent solution is obtained. Such a 

numerical procedure, called a partially parabolic procedure by Spalding, was 

used to compute an incompressible turbulent flow in a two-dimensional curved 

duct. 4 The upstream propagation of pressure effects, which cannot be calculated 

by a parabolic procedure, was demonstrated. The computational advantage of 

such a procedure over a fully elliptic procedure is very great and was illus- 

trated in ref. 5. 

The present partially elliptic flow computer program is developed for a 

three-dimensional, mixed subsonic-supersonic, turbulent, reacting flow in a 

rectangular parallelepiped. The governing differential equations and their 

finite-difference formulations are presented in Section II for a three-dimen- 

sional fully elliptic flow field. The necessary boundary conditions for three 

different boundaries are specified. A method of solving these difference 

equations is briefly discussed. In section III, the finite-difference equa- 

tions are reduced to a set of partially elliptic equations. The differences 

between the partially elliptic and the parabolic formulations are discussed, 

and the advantage in computer storage of a partially elliptic program over a 

fully elliptic program is pointed out. In section IV, the numerical computation 

procedures of the present partially-elliptic program are described. In section 

V, numerical applications of the program are performed. Differences between 

the calculations of the present program and of the parabolic program from 

which it was developed are presented. Finally, the capabilities and limitations 

of the present program are discussed and future extensions are suggested. 
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II. FORMULATIONS FOR A FULLY ELLIPTIC FLOW FIELD 

In this section, a finite-difference formulation for a three-dimensional 

fully elliptic flow field is derived. Expressions of boundary conditions for 

three different boundaries are formulated. These formulations could be used 

to develop a three-dimensional fully elliptic flow computer program. For the 

present purpose, however, they are reduced for developing a three-dimensional 

partially elliptic flow computer program. 

To be consistent with the geometry of the present configuration of the 

supersonic combustor, and also with the existing parabolic flow computer pro- 

gram, the formulation is developed based on an Eulerian formulation in a rec- 

tangular coordinate system (x,y,z) with the z-axis coinciding with the main 

flow direction. The flow field is governed approximately by the Navier-Stokes 

equations together with the equation of state and the species equations. To 

account for turbulence effects the laminar exchange coefficients are replaced 

by the corresponding effective exchange coefficients. The turbulence is 

described by the "k-E" two-equation turbulence mode1.l Equilibrium chemical 

reactions are assumed. This assumption is not essential to the problem develop- 

ment; finite-rate reactions with or without unmixedness can be incorporated 

without any difficulties. Thus the governing equations can be written in the 

following general form: 

a 
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where f$ is a general dependent variable, and r 
4 

is a general exchange co- 

efficient. When $ = 1, u, v, w, H, f, k or E, equation (1) corresponds, 

respectively, to the continuity, three components of momentum, energy, con- 

centration, turbulence kinetic energy, or turbulence energy dissipation rate 

equation. On the left-hand side of equation (l), the first term represents 

the sum of convection and diffusion in the x-direction, and the second and 

third terms are those in the y and z directions, respectively. The term S 
4 

on the right-hand side is called the source term which includes all other 

terms in the differential equation corresponding to 4. The appropriate e,x- 

change coefficients r 
Q 

and source terms S 
Q 

for each variable 4 are listed in 

Table I. The general effective exchange coefficient is composed of two parts, 

a turbulent and laminar; i.e. 

where Prt ,+, PrR,$, I-it, ad v’R are, respectively, the turbulent and lsminar 

Prandtl numbers and viscosities. The values of Prt, PrR and the constants Cl 

and C 2 in Table I are usually determined empirically (for example, ref. 1). 

The numerical formulation is based on a finite-difference form of equa- 

tion (1). A "staggered" grid system (refs. 6, 7) is used. An arbitrary node 

point P is surrounded by six neighboring node points denoted by E, W, S, N, U 

and D for east, west, south, north, upstream, and downstream, respectively, 

in three directions as shown in figure 1. The rectangular control volume of P 
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is chosen such that the faces of the control volume are located at the mid- 

points e, w, s, n, u and d between P and its respective neighboring nodes. 

All dependent variables except velocity components are stored at node points, 

velocity components are stored at mid-points between nodes. The projections 

of a typical control volume in the xy and yz planes and the locations for 

velocity components stored are shown in figure 2. 

By integrating equation (1) over the control volumes a set of difference 

equations can be obtained. For example, the net flux of convection and diffusion 

of the general variable 4 in the x-direction through the control volume can be 

written as 

with 

AZ = (Ay)(Az) 
r@E (Pd, 
6x,- 2 

A: = (Ay)(Az) 
W 

(2) 

(3a) 

(3b) 

The fluxes of convection and diffusion in the y and z directions can be ex- 

pressed in a similar manner. When the source term S 
@ 

.is linearized, the volume 

integration of the source term becomes 
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S9 (Ax>(Ay>(.Az) = Su 9 + sp 4 $ , , (4) 

The resultant finite-difference equation is expressed in the following form: 

with 

A = AZ + A," + A; + Ay, + A; + AZ - s P P,Q 

(5) 

(6) 

The present formulation is made for a flow field in a rectangular parallele- 

piped. To solve the set of difference equations of form (5), the boundary con- 

ditions for all variables Q must be specified at all boundaries. In general, 

,each of the six surfaces of the parallelepiped may be either a surface with uni- 

form flow (e.g. freestream), a symmetry boundary, or a solid wall. At the 

boundary with uniform flow or of symmetry, the uniform or symmetry boundary 

conditions are specified respectively. For wall boundaries, the variations of 

flow variables are very steep close to walls. To avoid the use of extremely fine 

grids near walls, the wall function method is used. a Since the present turbulence 

model is valid for fully turbulent flows, all node points (except those at walls) 
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must be located in fully turbulent flow. Hence, the near wall points must be 

far enough from the wall to ensure that the local Reynolds number is 

sufficiently large. The flow between the near wall points and the wall is 

assumed to obey the law-of-the-wall. For example, the velocity component w 

is expressed as 

+ W = $ Rn E y' (7) 

where w+=w/(-c/p) 112 
W and Y+=Y(w) ;'2/~a or pC1'2 1'2S/u D k R at the near wall points 

in the present turbulence model. The empirical constants K, E and C,, are given 

values of 0.42, 9.0 and 0.09 respectively; 6 is the distance of the near point 

to the wall. Thus the wall boundary condition for each variable, except the 

turbulence dissipation rate E, can be formulated in terms of the flux of the 

variable (at the near wall point) with an appropriate exchange coefficient 

derived from the law-of-the-wall. The diffusion flux of E to the wall is 

difficult to express. Instead of using the flux and an appropriate exchange 

coefficient, the dissipation rate itself is specified at the near wall point, 

E near wall 
= (f4 k312,K6 

A summary of the wall boundary conditions for all dependent variables @ at 

the near wall points is presented in Table II. 

Several computation procedures are available for solving these three- 

dimensional finite-difference equations. A relaxation procedure used by 

12 
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Spalding et al7 has been found to be efficient and successful. 9 JO This 

procedure involves a guess and correct scheme for the coupling of velocity with 

11 pressure , a "hybrid" scheme for modifying the coefficients of the difference 

equations, 12 and a triple sweep line-by-line iterative scheme using a standard 

tridiagonal matrix algorithm in the x, y and z directions. Details are given 

in references 7, 9 and 10. It shouldbe pointed out that the solution of the 

finite-difference equation (5) at an arbitrary point requires solutions at six 

neighboring points. Therefore,three-dimensional storage locations are required 

for all variables. Such a large storage requirement combined with present 

computer capabilities severely limits the number of node points that can be used 

and is therefore cause for concern in developing a fully-elliptic computer 

program. In the next section, the finite-difference formulation will be 

simplified to a set of partially elliptic equations. The computer program based 

on a partially elliptic formulation requires much less computer storage than a 

fully elliptic program but only a small increase in storage over that required 

for a parabolic program. 
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III. FORMULATIONS FOR A PARTIALLY-ELLIPTIC FLOW FIELD 

As discussed in the Introduction, the main flow field in the supersonic 

combustor possesses a predominant flow direction. The diffusion of mass, 

momentum, energy, etc. along the flow direction can be neglected as compared 

with the corresponding convection. The governing equations, except for 

pressure, can be simplified to a set of parabolic equations. By assuming a 

(three-dimensional) pressure field, this set of parabolic flow equations can be 

solved by a marching-integration procedure along the flow direction (assumed to 

be in the z-direction).l' The pressure field is generally governed by an 

elliptic equation and can be solved by sn iterative procedure. In this section 

the finite-difference equations for such a partially elliptic flow field are 

obtained. The nature of the equations as related to the method of solution is 

discussed. 

Since the flow variables (except pressure) at a stresmwise station depend 

only on quantities at the immediately upstream station (not on those at the 

downstream stations), slightly different control volumes are chosen for the 

finite-difference formulation. The projections of a general control volume 

in the xy and yz planes are shown in figure 3. In the xy (cross-stream) plane, 

the control volume is exactly the same as that in figure 2, whereas, the yz 

(streamwise) plane, the upstream and downstream faces of the control volume 

are located at U and P. By neglecting all diffusion terms in the z-direction in 

equation (11, and taking volume integrations of equation (l),over the respec- 

tive control volumes, a set of finite-difference equations is obtained. The 

continuity equation becomes 
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E (PW), - kdul(~)(Ay) + km), - (pu),l(Ay >&I 

+ [ (.Pdn - (PV),I(AX)(AZ) = o (9) 

The general differential equation for $, except three momentum equations, takes 

the following form, 

with 

S 
P,@ 

+ 
FU 

(10) 

(11) 

Where AZ, AC, A’, Ai, S S UT@ 
are the expressions defined in Section II; FU depends 

on the mass flux through the upstream face of the control volume, 

FU = (PW), (Ax)(AY)/(Az) (12) 

For the three momentum equations, the difference equations are formulated based 

on the control volumes of velocity components 

Au =A&+AX 
PU w “w + A’ u s s + A: ?N + su,u + Fu”v 

- DU (pp - pw) 
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Av 
PP 

= AZ vE + A; vw + A; vS + A; "N + ' 
u9v + Fuvu 

- DV (PP. - P,) 

Aw 
PP 

= A: wE + A; w W + A' w s S +Ayw +S n N u,w+~U~U 

(14) 

(15) 

- Dw (P, - pp) 

where D u = (A~)(Ay)(Az)/6x,j, D" = (A~)(Ay)(Az)/dy~, and D" = (Ax)(Ay). 

When the local Mach number is greater than one, the last term (pressure gradient) 

in eq. (15) is replaced by Dw(pp - pu). 

The boundary conditions for all flow variables must be specified at the 

boundaries parallel to the z-axis. The formulations of these boundary condi- 

tions were discussed in Section II. At the upstream boundary sll flow variables 

must be specified; at the downstream boundary, only the pressure is required in 

the subsonic flow field. 

By comparing the finite-difference equations of the partially-elliptic 

formulation presented above with these of a parabolic flow problem outlined 

in reference 1 or 13, it is seen that the two formulations are essentially the 

same. The differences lie mainly in the treatment of the pressure field and 

the pressure gradient terms in the three momentum equations. For the parabolic 

flow problem as described in ref. 13, the stresmwise pressure gradient is 

decoupled from the transverse pressure gradients. Since the downstream pressure 

effects are negligible in parabolic flows, an approximate velocity field is 

obtained by setting dp/dz = 0 or Pp(x,y) = Pu(x,y). The approximate pressure 

and velocity fields are then corrected using a pressure correction governed by 
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a two-dimensional (elliptic) equation derived from the continuity equation. 

Thus the pressure can be treated as though it were like the other variables, 

independent of downstream quantities. 

In the partially-elliptic flow problem the effects of downstream quentities 

transmitted through the pressure field are important. To determine such flow- 

fields, an iterative marching-integration procedure is used. An approximate 

three-dimensional pressure field denoted by p* is first assumed and later 

obtained from the previous iteration. The approximate pressure is corrected 

by a pressure correction p' governed by a three-dimensional elliptic equation 

derived from the continuity equation (9). The finite-difference form of the 

pressure correction equation is 

1 1 1 1 I , 1 I 
AP 

PP 
= AepE + Awpw + AspS + AnpN + A&, + A&, + Su 

where 

, 
A =A +Aw+A +A 

P e S n+AD+AU 

A; = (Ay)(Az)[(pD"/Ap) e ? $ (u zIel 
W W W 

A; = (Ax>(.Ad[ (d/A 1 
Ps 

n n 'n 

4 = (AX)(&) (pDw/A ) 
PP 

(16) 

(17) 

(18a) 

(lb) 

(3-8~) 
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4 = (Ad(ay)[b~~/~~)~ + (W -!$,I (18d) 

s; = [(PW), - (~)~l(.Ax)(hy) + [(pulw - (PU)~.I(AY)(AZ) (19) 

+ [(PV) S - (~v)~l(Ax)(Az). 

All variables in eqs. (17)-(19) are calculated based on the approximated flow 

field (p*, etc.). 0nc:e the pressure correction p' is obtained from eq. (16), 

the approximate pressure p* and velocity components (u*, v*, w*) are corrected 

as follows 

p = p” + p’ 

u = U* + (D~/A~): (p' - p') 
w P 

v = V* + (D~/A~)~ (P' - P;) 
S 

w = W* + (D~/A~)~X (p; - pi) + (" 22 * 
P aP)p p: 

(20) 

(21) 

(22) 

(23) 

This procedure is repeated for each forward step. The detsils of the calcula- 

tion procedures will be described in Section IV. 

By inspection of the above difference equations, it can be seen that the 

solutions at a point (except pressure) depend only on solutions at four 

neighboring points in the xy (cross-stream) plane. The solution in the pressure 

correction depends on quantities at six neighboring points. Therefore, to solve 
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these equations, only the pressure .snd the pressure correction require three- 

dimensional storage. The other variables require only two-dimensional storage 

like a parabolic flow program. In comparison with the three-dimensional fully- 

elliptic formulation presented in Section II, a great saving of computer storage 

is realized for a three-dimensional computer program based on the partially- 

elliptic formulation. 
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IV. COMPUTATION PROCEDURES AND COMPUTER PROGRAM 

In this section the numerical procedures for solving the system of three- 

dimensional, partially-elliptic, finite-difference equations are described. 

The computer program thus developed is discussed. 

The present numerical procedure combines the marching-integration scheme 13 

used in the parabolic flow program' and the iterative scheme 5 used for solving 

the elliptic pressure field. The general calculation steps are outlined in 

the following: 

1. The pressure field is first assumed at all three-dimensional storage 

locations. 

2. A marching-integration procedure is initiated which marches through the 

flow field. In equations (13)-( 15)') the pressure gradient terms are evaluated 

from the assumed pressure field, and the coefficients A, source terms S 
uda 

and 

WJ for 4 = u,v,w are evaluated from the upstream conditions. Then the two- 

dimensional difference equations (13)-(15) are solved by a double-sweep line-by- 

line iterative scheme using a tridiagonal matrix algorithm. 

3. The newly calculated velocity components are checked for mass conser- 

vation at all node points in the xy (cross-stream) plane. The unbalance of 

mass conservation is necessary for calculation of the pressure correction, 

which is obtained from eq. (16). Since an iterative scheme is used in solving 

the three-dimensional pressure field, eq. (16) is simplified by setting 

' = 
'U 'D ' = 0 to save computer storage. TI-IUS, eq. (16) is reduced to a two- 

dimensional equation, and csn be solved by the double-sweep line-by-line itera- 

tive scheme. 
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4. After obtaining the pressure correction, the pressure and velocity 

componentsare then correctedby eqs. (20)-(23). 

5. Equation (10) for the other variables (e.g. + = k, C, H, f, etc.) is 

also solved by the double-sweep line-by-line iterative scheme, so as to pro- 

vide flowfield quantities appropriate to a new downstream station. 

6. The streemwise march is continued until the end of.the partially 

elliptic flow region is reached. By the end of one complete march (iteration), a 

new three-dimensional pressure field has been obtained. 

7. Steps 2, 3, 4, 5, 6 are then repeated until the pressure corrections 

at all node points become smaller than a prescribed value. On the last itera- 

tion, the converged flow variables are printed out. 

As discussed in Section IV, except for pressure, the finite-difference 

formulation for the partially elliptic flow program is essentially the same as 

for the parabolic flow program. In the numerical procedures just described, 

steps 2 to 6 within each iteration are similar to those in the parabolic pro- 

gram. Therefore, the parabolic program provides the main part of the present 

partially elliptic program. The present prcgram considers three-dimensional, 

turbulent, reacting (equilibrium) flow in a supersonic combustor in the form of 

a rectangular parallelepiped. Each lateral boundary of the parallelepiped can 

be either a solid wall, a symmetry boundary, or a surface with a uniform (or 

free) stream. The wall boundaries are allowed to vary smoothly along the flow 

direction. 

The pressure field in the present program requires three-dimensional 

storage. Thus the streamwise dimension of the pressure field determines, and 

also limits, the maximum number of march steps in each iteration. Pressure 

gradients are evaluated from the assumed pressure field; consideration is also 
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given as to whether the local flow field is subsonic or supersonic. In the 

first iterative solution pressure gradients are assumed to be zero; thus the 

first iterative solution is the parabolic flow solution. The higher order 

iterative solutions depend on the pressure fields obtained from the previous 

iterations. To ensure stability of the iterative procedure a pressure (under) 

relaxation factor is introduced. Since the flow problem is highly nonlinear, 

good criteria to determine a suitable value for this factor have not been 

found. At present this factor is determined by numerical experimentation. 
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V. APPLICATIONS OF THE PROGRAM 

In this section applications of the present progrsm are presented. Be- 

cause of the lack of good quality experimental data, detailed evaluations of 

the program by comparing with experiments are not possible at the present time. 

Therefore,, results from the present calculations are compared with results from 

the parabolic program. Such comparisons demonstrate the importance of the 

effects predicted by the partially-elliptic progrsm. Furthermore, previous 

evaluation of the parabolic program has already established its accuracies and 

capabilities; the numerical comparison: between it and the present program infer 

the usefulness of the present program to supersonic combustor research. 

A numerical example was performed for the flow field of a hydrogen 

jet mixing with a supersonic airstream in a rectangular duct. As shok-n in 

figure 4, a slightly subsonic (M 
3 

= .O.gg) hydrogen jet with uniform exit condi- 

tions, w. 
J 

= 1500 m/set, T 
3 

= 400 K, and p 
3 

= 0.101 MPa, is located at the 

center of the duct. The ducted airstream at the jet exit plane is also assumed 

to be uniform with w = 990 m/see, T = 1700 K, and p = 0.101 MPa (i.e. M = 1.2). 

The upper and lower walls diverge slightly to allow for shock and Mach waves to 

develop and interact with the subsonic stream at the center of the duct. Com- 

putations were performed for both reacting and nonreacting cases. 

Stresmwise pressure variations along the centerline of the duct 0 and at 

the duct cover C for both partially elliptic and parabolic nonreacting calcu- 

lations are shown in figure 5. The convergent partially elliptic calculations 

were obtained after eleven iterations. Note that streamwise marching steps are 

used on the abscissa in fig. 5 instead of the usual physical distance; the step 

size used in all present calculations is 0.004 of the duct height. The downstream 

23 

I ..- 



pressure effects considered by the partially elliptic program are clearly 

demonstrated by the comparison. Because the subsonic region is small, the 

downstream effects change the centerline pressure only about 2 percent. At 

the duct corner, the downstream effects through the boundary layer are even 

smaller. Nevertheless, the present partially elliptic program does predict' 

correctly the qualitative physical phenomena. 

From the same calculations cross-duct profiles are presented in figures 

6a and b of stre=vlrwise velocity w, pressure p, and mass fraction of total 

hydrogen fTH at y = 0 and 0.5 cm along the lines OA and DB in fig. 4 at step 

32 (z = 0.468 cm). Because of the small downstream effects, the differences 

between the two calculations are small and mainly occur in the subsonic jet 

region (fig. 6a). As expected, there is no effect in the supersonic flow 

region (fig. 6b). 

The streamwise pressure variations along the centerline of the duct 0 

and the duct corner C for reacting calculations are shown in fig. 7. The 

partially-elliptic results are obtained based on 11 iterations. Because of 

the combustion of hydrogen, the centerline pressure increases much more abruptly 

than in the nonreacting case. The large increase in pressure propagates up- 

stream in the partially-elliptic calculation and causes as much as 14% of pressure 

difference over the parabolic calculation. Again, the difference in pressures 

at the duct corner is relatively small; however, the pressure variations due 

to the occurrence of shock and Mach waves are clearly shown. 

Figure 8 shows the convergence behavior of the streamwise pressures of 

the same reacting calculation. The strem-ise march has been extended to 80 

steps. Results show that the rate of convergence depends on the distance from 

the jet exit. The solution converges faster close to the jet exit than 
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downstream; for example, beyond step 75, the centerline pressure has still not 

reached the convergent solution even after 26 iterations. 

The reacting results for cross-stream profiles of the streamwise velocity 

w and the mass fraction of total hydrogen .fTH at Y = 0 (line OA in Fig. 4) 

and at step 32 are presented in fig. 9a. The profiles of the pressure p and 

the mass fraction of water vapor are shown in fig. 9b. As in the results 

shown in fig. 7, the partially-elliptic calculations show differences in these 

profiles over the parabolic calculations, especially the large difference in 

the water vapor distribution. 

Reacting results of cross-stream profiles at y = 0.5 cm (line DB in fig. 4) 

and at step 32 are presented in figs. 10a and b. At this location, the down- 

stream effects predicted by the partially-elliptic calculation are much smaller 

than those near the jet centerline. 

Cross-stream profiles at step 52 (z = 0.787 cm) are presented in figures 

11 and 12. Because of the large pressure increase and wide spreading of the 

reacting region, the partially elliptic calculation predicts much larger effects 

than those at step 32. Even away from the centerline, the effects predicted by 

the partially elliptic calculation are both quantitatively and qualitatively 

important. 
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VI. DISCUSSION AND CONCLUSION 

To advance the computational capability for comibustor research, a three- 

dimensional partially elliptic flow computer program hes been developed. The 

program is capable of predicting combustion flow-fields with large downstream 

effects; this was not possible using a parabolic flow computer program. The 

physical models and numerical schemes of the development of this partially- 

elliptic flow program have been consistent with those of the parabolic flow 

program. 

Physically, this partially elliptic flow program adopts a rrk-.Erl two- 

equation turbulence model and a model of equilibrium reactions among species. 

Although the application of such an equilibrium reaction model is limited, it 

is not difficult to incorporate any finite-rate reaction model into the pro- 

gram. Numerically, this program is based on a finite-difference formulation 

in a "staggered" grid system. A combined central and upwind difference scheme 

is used in the finite-difference equations which are then solved by a line-by- 

line iterative scheme using a tridiagcnal matrix algorithm. 

The main difference between the present partially elliptic flow program 

and the parabolic flow program is implied by their nsmes. The parabolic flow 

program is based on a set of parabolic equations with a known (arbitrary) 

pressure field. The partially elliptic flow progrtm is based on a similar set 

of parabolic equations; however, the pressure gradients in the momentum equations 

are evaluated from a three-dimensional pressure solution. Thus an iterative 

marching-integration procedure is necessary to obtain the three-dimensional 

pressure field and the other flow variables. With only a small increase in 

'computer storage over.the parabolic flow program, the present program is 
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capable of predicting the downstream effects. 

The importance of the present partially elliptic flow program has been 

demonstrated by the numerical example presented in Section V. The differences 

between results obtained from the partially elliptic and parabolic calculations 

are significant especially in the combustion flow field. Moreover, since 

chemical.reactions are strongly pressure dependent, the downstream pressure 

effects predicted may have important effects on calculations using finite-rate 

reactions. 

The main physical limitation of the partially elliptic program is its 

inability to predict recirculation flow fields. For a three-dimensional re- 

circulation flow field, a three-dimensional elliptic flow program is required. 

The finite-difference formulation and method of solution for such an elliptic 

flow have been presented in Section II. However, the large computer storage 

requirement has been a major drawback to development of such a computer program. 

The future extensions for the present program include the optimal applica- 

tion of the iterative procedure in order to minimize computer time. Since the 

number of iterations required depends on the assumed pressure field and the 

relaxation factor, a rational method to estimate a relaxation factor and to 

obtain stable iterations is more important. Moreover, it also has been noted 

that the rate of solution convergence decreases along the strecmwise direction; 
7 

i.e. the upstream flow field requires fewer iterations than the downstream. 

Thus , the present program should be tailored especially to actual needs. Other 

work related to combustor development should include the incorporation of a 

.finite-rate chemical reaction model to predict realistic combustion flow fields 

and the development of efficient solution algorithms to save computer storage 

and computing time. 
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In conclusion, the present partially elliptic flow program has advanced 

the computational capability for combustor research. Combustor flow fields 

with impcrtant downstream effects can now be predicted. 
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Table II. Wall Boundary Conditions at Near Wall Points 

% , near wall 

Velocity components 

normal to the wall (0 at wall) 

Velbcity components 

parallel to the wall (0 at wall) 

k 

(0 at wall) 

0 

E cD 
314 k3/2;,g 

f 0 

H 1-1R 
'l;c H 

Ly+> 11.5 

3 + !b(m+) + 'H 

Pi 
PrQ y+ 211.5 
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